Воронежский государственный университет (лаборатория медицинской кибернетики, заведующий лабораторией)
Воронеж, Воронежская область, Россия
в целях моделирования обучения интегрированных в нервную ткань нейрочипов разработан программный комплекс, позволяющий имитировать функционирование нервной ткани, для дальнейшего ее восстановления после моделирования повреждения. Для этапа моделирования восстановления поврежденной нервной ткани, программный комплекс позволяет моделировать восстановление поврежденной ИНС – “А” при помощи корректирующей ИНС – “Б”, путем эволюционного отбора последней. Проведены численные экспериментов подтверждающие возможности программного комплекса по созданию, повреждению и восстановлению ИНС, с целью моделирования восстановления поврежденных функций нервной ткани микрообластей мозга.
искусственные нейронный сети, нейрочип, восстановление нервной ткани, корректирование искусственной нейронной сети, повреждение искусственной нейронной сети, моделирование нервной ткани.
УДК 004.5 004.94
АВТОМАТИЗИРОВАНИЕ МОДЕЛИРОВАНИЯ ОБУЧЕНИЯ НЕЙРОЧИПОВ
AUTOMATION OF SIMULATION TRAINING NEUROCHIP
Туровский Я.А., к.м.н., доцент
ФГБОУ ВПО «Воронежский государственный университет»
г. Воронеж, Россия
yaroslav_turovsk@mail.ru
Кургалин С.Д., д.ф.-м.н., профессор
ФГБОУ ВПО «Воронежский государственный университет»
г. Воронеж, Россия
kurgalin@bk.ru
Адаменко А.А., аспирант
ФГБОУ ВО "Воронежский государственный университет инженерных технологий"
г. Воронеж, Россия
adamenko.artem@gmail.com
DOI: 10.12737/16006
Аннотация: в целях моделирования обучения интегрированных в нервную ткань нейрочипов разработан программный комплекс, позволяющий имитировать функционирование нервной ткани, для дальнейшего ее восстановления после моделирования повреждения. Для этапа моделирования восстановления поврежденной нервной ткани, программный комплекс позволяет моделировать восстановление поврежденной ИНС – “А” при помощи корректирующей ИНС – “Б”, путем эволюционного отбора последней. Проведены численные экспериментов подтверждающие возможности программного комплекса по созданию, повреждению и восстановлению ИНС, с целью моделирования восстановления поврежденных функций нервной ткани микрообластей мозга.
Summary: to simulate training integrated into the nervous tissue neurochips developed a software package that allows you to simulate the functioning of the nervous tissue, to further her recovery from damage modeling. At the stage of modeling the functioning of the nervous tissue is not damaged software package used for training ANN using algorithms such as backpropagation algorithm, evolutionary algorithm, sorting algorithm weights. The next step is simulating damage to the INS by manual or automated change the weights of ANN. For the simulation phase restoration of damaged nerve tissue, software package allows you to simulate the restoration of damaged ANN - "A" with the INS correction - "B" by the latest evolutionary selection. Numerical experiments confirm the possibility of software for creating, damage and restoration of ANN to simulate repair damaged tissue in the nervous microscopic regions of the brain.
Ключевые слова: искусственные нейронный сети, нейрочип, восстановление нервной ткани, корректирование искусственной нейронной сети, повреждение искусственной нейронной сети, моделирование нервной ткани.
Keywords: Artificial neural network neurochip, the restoration of nervous tissue, correction of an artificial neural network, damage to an artificial neural network, modeling of neural tissue.
1. Improved backpropagation learning in neural networks with windowe momentum. E. Istook, T. Martinez. ШInternational Journal Of Neural Systems. № 12. С. 303-318.
2. Learning representations by back-propagating errors. D. E. Rumelhart, G. E. Hinton, R. J. Williams. Nature. 1986. № 323. C. 533-536.
3. A Direct Adaptive Method for Faster Backpropagation Learning: The RPROP Algorithm. M. Riedmiller, H. Braun. Institut fur Logik, Komplexitat und Deduktionssyteme, University of Karlsruhe C. 586-591.
4. A Constructive Algorithm for the Training of a Multilayer Perceptron Based on the Genetic Algorithm. H. C. Andersen, A. C. Tsoi. Complex Systems. 1993. № 7. C. 249-268.
5. https://www4.rgu.ac.uk/files/chapter3%20-%20bp.pdf
6. On the momentum term in gradient descent learning algorithms. N. Qian. Neural Networks. 1999. № 12. С. 145-151.
7. http://www.aiportal.ru/articles/neural-networks/activation-function.html
8. Neural networks and their applications. Chris M.Bishop. Review of scientific instruments. 1994. № 6. С. 1803-1832.