Саратов, Саратовская область, Россия
, Россия
ГРНТИ 50.07 Теоретические основы вычислительной техники
ББК 3297 Вычислительная техника
The purpose of this work is to study and scientific visualization the effect of additive white noise on the nonlinear dynamics of beam structure contact interaction, where beams obey the kinematic hypotheses of the first and second approximation. When constructing a mathematical model, geometric nonlinearity according to the T. von Karman model and constructive nonlinearity are taken into account. The beam structure is under the influence of an external alternating load, as well as in the field of additive white noise. The chaotic dynamics and synchronization of the contact interaction of two beams is investigated. The resulting system of partial differential equations is reduced to a Cauchy problem by the finite difference method and then solved by the fourth order Runge-Kutta method.
nonlinear dynamics, contact interaction, chaotic phase synchronization, white noise
1. Awrejcewicz, J., Krysko, A.V., Pavlov, S.P., Zhigalov,M.V., &Krysko, V.A. (2017). Chaotic dynamics of sizedependent Timoshenko beams with functionally gradedproperties along their thickness. Mechanical Systems and SignalProcessing, 93, 415-430.
2. Awrejcewicz, J., Krysko-Jr, V.A., Yakovleva, T.V.,Krysko, V.A. (2016). Noisy contact interactions of multi-layermechanical structures coupled by boundary conditions. Journalof Sound and Vibration, 369, 77-86.
3. Kantor B.Ya. Contact problems of the nonlinear theory ofshells of revolution, Kiev, Naukova Dumka, 1991, p. 136
4. Krysko, V.A., Awrejcewicz, J., Papkova, I.V., Saltykova,O.A., Krysko, A.V. (2019). Chaotic Contact Dynamics of TwoMicrobeams under Various Kinematic Hypotheses. InternationalJournal of Nonlinear Sciences and Numerical Simulation, 20(3-4), 373-386.
5. Yakovleva, T.V., Krysko Jr, V.A., &Krysko, V.A. (2019,March). Nonlinear dynamics of the contact interaction of a threelayer plate-beam nanostructure in a white noise field. In Journalof Physics: Conference Series (Vol. 1210, No. 1, p. 012160). IOPPublishing.