Брянск, Брянская область, Россия
Брянск, Брянская область, Россия
ГРНТИ 50.07 Теоретические основы вычислительной техники
ББК 3297 Вычислительная техника
The paper presents continuation of research in the field of constructing a visualization metaphor of cognitive models based on fuzzy cognitive maps. The focus is on the spatial metaphor as the basis for representation metaphor formation. A method is proposed for quality assessment of a spatial metaphor of a fuzzy cognitive map based on formalized cognitive clarity criteria defined in the previous part of the study. To this end, methods have been developed to formalize several nontrivial criteria of cognitive clarity. An example is given that confirms correctness of the proposed method for assessing the quality of a visualization metaphor.
fuzzy cognitive map, graph visualization, cognitive clarity, visualization metaphor
1. Abramova N.A., Voronina T.A., Portsev R.Y. O metodah podderzhki postroeniya i verifikacii kognitivnyh kart s primeneniem idej kognitivnoj grafiki [Ideas of Cognitive Graphics to Support Verification of Cognitive Maps] // Upravlenie bol'shimi sistemami. Special issue 30.1 “Setevye modeli v upravlenii”. – Moscow: ICS RAS, 2010. – pp. 411-430 [in Russian].
2. Borisov V.V., Kruglov V.V., Fedulov A.S. Nechetkie modeli i seti [Fuzzy Models and Networks]. – M.: Goryachaya Liniya – Telekom, 2012. – 284 p. [in Russian]
3. Huang W., Hong S.H., Eades P. Predicting Graph Reading Performance: A Cognitive Approach // Proc. Asia Pacific Symposium on Information Visualization (APVIS2006). – Tokyo, Japan, 2006. – pp. 207–216.
4. Isaev R.A., Podvesovskii A.G. Sovershenstvovanie mekhanizma vizualizacii nechetkih kognitivnyh modelej v sisteme podderzhki prinyatiya reshenij «IGLA» [Improvement of the Mechanism of Fuzzy Cognitive Models Visualization in Decision Support System «IGLA»] // Proceedings of the International Conference “Sovremennye tekhnologii v nauke i obrazovanii – STNO2017” [Up-to-date Technologies in Science and Education], Vol.1. – Ryazan: Ryazan State Radioengineering University, 2017. – pp. 138-142 [in Russian].
5. Meyer B. Self-Organizing Graphs – A Neural Network Perspective of Graph Layout // Whitesides S.H. (eds) Graph Drawing. GD 1998. Lecture Notes in Computer Science, vol 1547. Springer, Berlin, Heidelberg.
6. Noack A. An energy model for visual graph clustering // Proceedings of the 11th International Symposium on Graph Drawing. Springer-Verlag, 2004. – pp. 425-436.
7. Podvesovskii A.G., Isaev R.A. Visualization Metaphors for Fuzzy Cognitive Maps // Scientific Visualization, 2018, Vol. 10, Num. 4, pp. 13-29. – doi: 10.26583/sv.10.4.02
8. Silov V.B. Prinyatie strategicheskih reshenij v nechetkoj obstanovke [Strategical Decision Making in Fuzzy Environment] – Moscow: INPRO-RES, 1995. – 228 p. [in Russian]
9. Zakharova A.A., Podvesovskii A.G., Isaev R.A. Matematicheskoe i programmnoe obespechenie podderzhki kognitivnogo modelirovanija slabostrukturirovannyh organizacionno-tehnicheskih system [Mathematical and Software Support for Cognitive Modeling of Semi-structured Organizational and Technical Systems] // International conference CPT2019. – Nizhniy Novgorod: Pub. NNGASU and SRCIPT. 2019. – pp. 131- 141 [in Russian].
10. Zakharova A.A., Shklyar A.V. Visualization Metaphors // Scientific Visualization, 2013, Vol. 5, Num. 2, pp. 16-24.