сотрудник
Брянск, Россия
, Россия
ГРНТИ 50.07 Теоретические основы вычислительной техники
ББК 3297 Вычислительная техника
It is proposed to use the methods of fractal analysis to determine the morphological characteristics of the structure of structural materials. The questions of fractal aggregation of particles in the process of crystallization of ductile iron are considered, an austenitic-graphite cell is used as an elementary particle. Based on the mesh method, images of the microstructure of ductile irons are analysed and conclusions are drawn about the similarity of the nature of the process of their crystallization and fractal aggregation of particles. Based on the calculated fractal dimensions, a theory is proposed to explain the features of the crystallization process of ductile irons.
fractal analysis, dimension, cluster, aggregation, material, cast iron, graphite, inclusions, crystallization
1. Bozhokin S. V. (2001) Fraktaly i multifraktaly [Fractals andmultifractals]. Moscow-Izhevsk. NRC: Regular and chaoticdynamics (in Russian)
2. Vstovskij G.V., Kolmakov A.G., Bynin I. Zh. (2001)Vvedenie v mul'tifraktal'nuyu parametrizaciyu strukturmaterialov [Introduction to multifractal parameterization ofmaterials structures]. Moscow-Izhevsk. NRC: Regular andchaotic dynamics (in Russian), p. 116.
3. Falconer K. (1997) Techniques in Fractal Geometry, JohnWiley & Sons, 256 p.
4. Feder Е. (1991) Fraktaly [Fractals]. Moscow: World. 254 p.
5. Gong Yu, Chengbao Wu, Jian Wang, Lei Kong. (2015)Calculating the Fractal Dimension of the Material FractureSurface Based on the Triangular Prism Surface AreaMethod. International Conference on Automation,Mechanical Control and Computational Engineering(AMCCE 2015), pp. 2242 – 2247.
6. Kulak M. I. (2002) Fraktalnaya mehanika materialov [Fractal mechanics of materials]. Minsk: High school. 302p.
7. Makarenko K.V. (2009) Simulation of CrystallizationProcess of Iron with Globular Graphite. Metal Science andHeat Treatment, V. 51, № 11-12. pp. 528 – 532.
8. Mandelbrot B. (2002) Fraktalnaya geometriya prirody [Thefractal geometry of nature]. Moscow: Institute for computerresearch, p. 656.
9. Masatoshi Futakawa, Kihei Tsutsui, Hiroyuki Kogawa,Takashi Naoe (2016) Numerical Simulation on MoltenMetal Collision Behavior Using SPH Method Combinedwith Fractal Analysis on Morphology of Stacking PatternKey Engineering Materials, V. 715. pp. 203-209.
10. Nakayama T., (2003) Fractal Concepts in CondensedMatter Phisics. Springer: Series in solid-state sciences, 224p.
11. Oliveira Alessandra da Silva, Verônica dos Santos Lopes,Ubirajara Coutinho Filho, Rodrigo Braga Moruzzi, AndréLuiz de Oliveira (2018) Neural network for fractaldimension evolution. Water Science & Technology, № 4 (V.78). pp. 795-802.
12. Schaefer, Dale. W. (1988) Fractal Models and the Structureof Materials. Materials Research Society MRS Bulletin, №2(V. XIII). pp. 22 – 27.
13. Smirnov B.M. (1991) Fizika fraktalnyh klasterov [Physicsof fractal clusters]. Moscow: Science. 136 p.
14. Swapna M. S., Sankararaman S. (2017) Fractal analysis – asurrogate technique for material characterization.Nanosystems: Physics, Chemistry, Mathematics, № 8 (6).pp. 809 – 815.
15. Wang Jian-zhong, Zheng-ping Xi, Hui-ping Tang, Weidong Huang, Ji-lei Zhu, Qing-bo Ao (2013) Fractaldimension for porous metal materials of FeCrAl fiber.Transactions of Nonferrous Metals Society of China, № 23.pp. 1046 – 1051.
16. Zolotyhin I.V., Kalinin U. E., Loginova V.I. (2005)Tverdotelnye fraktalnye stryktyry [Solid fractal structures].Alternative energy and ecology, vol.29.no 9. pp. 56 – 66.