ON PRESENTATION OF LINEAR OPERATORS COMMUTING WITH DIFFERENTIATION IN SIMPLY-CONNECTED DOMAIN
Abstract and keywords
Abstract (English):
Let H (G)  be a space of analytic functions of one variable in simply-connected domain G of the complex plane. It is known that a linear complex convolution operator is generated by a one-variable analytic function, a multivalued one in general. A known problem when all such functions are single-valued is solved. As it turned out, the solution to the problem is connected with the geometry of G domain. Set s(G)  with property s(G)+G ⊆ G is termed residue of G domain. A class of simply connected regions whose residue is a connected set is described. Let the linear operator be continuous in function space, analytical in simply-connected domain G, and let it commute with differentiation. Then it can be reduced to a complex convolution operator. It is proved that the function generating such an operator will always be single-valued for regions with a connected residue. When the residue of region G is not connected, there is always a complex convolution operator with a multivalued function generating a kernel.

Keywords:
residue of region, operator commuting with operator of differentiation, kernel of operator
Text

Введение. Рассматриваемые в статье задачи входят в направление исследований, представленное работами [1‒7]. Пусть G - односвязная область в комплексной плоскости C , и последовательность ограниченных расширяющихся областей
с кусочно-гладкой границей исчерпывает G. H (G) - пространство Фреше аналитических в G функций с топологией равномерной сходимости на компактах.

References

1. Schwartz, L.Theorie generale des fonctions moyenne-periodiques / L. Schwartz. Ann. of Math. — 1947. — Series 2. — V. 48. — Pp. 857‒929.

2. Köthe, G.-J. Dualitat in der Funktionentheorie / G.-J. Köthe. — Reine angew. math. — 1953. — Bd. 191. — S. 30‒49.

3. Dickson, D. G. Analytic mean periodic functions / D. G. Dickson. Trans. Amer. Math. Soc. — 1964. — V. 110. — Pp. 361‒374.

4. Tsar´kov, Yu. M. Izomorfizmy nekotorykh analiticheskikh prostranstv, perestanovochnykh so stepen´yu operatora differentsirovaniya / Yu. M. Tsar´kov. Teoriya funktsiy, funktsional´nyy analiz i ikh prilozheniya. — 1970. — T. 11. — S. 86‒92.

5. Bratishchev, A. V. Obshchiy vid lineynykh operatorov, perestanovochnykh s operatsiey differentsirovaniya / A. V. Bratishchev, Yu. F. Korobeynik. Matematicheskie zametki. — 1972. — T. 12. — S. 187‒195.

6. Korobeynik, Yu. F. Ob odnom klasse lineynykh operatorov / Yu. F. Korobeynik. Visshi tekhnicheski uchebni zavedeniya. Matematika. — 1973. — T. IX, kn. 3. — S. 23‒31.

7. Korobeynik, Yu. F. O razreshimosti v kompleksnoy oblasti nekotorykh obshchikh klassov operatornykh uravneniy / Yu. F. Korobeynik. — Rostov-na-Donu : OOO «TsVVR», 2005. — 246 s.

8. Burbaki, N. Funktsii deystvitel´nogo peremennogo / N. Burbaki. — Moskva : Nauka, 1965. — 424 s.

9. Bratishchev, A. V. Operatory obobshchennogo differentsirovaniya Gel´fonda—Leont´eva i polinomy Brenke / A. V. Bratishchev. Vestnik Don. gos. tekhn. un-ta. — 2010. — T. 10. — № 6 (79). — S. 813‒824.

10. Bratishchev, A. V. Ob operatorakh kompleksnoy svertki i obobshchennogo differentsirovaniya / A.V. Bratishchev. Trudy matematicheskogo tsentra im. N. I. Lobachevskogo. — 2013. — T. 46. — S. 127‒130.

Login or Create
* Forgot password?