R&D OF THE PERT BASIC MODEL FOR PROJECT PLANNING
Abstract and keywords
Abstract (English):
The guiding principles of project implementation are planning. The discrepancy in time, cost, and quality between the plan and the actual implementation of the project requires management decisions supported by an analysis of the optimization of the duration of the project and the search for reserves to reduce the implementation time. For this purpose, a basic PERT model for a specific project was developed, early and late deadlines for work, time reserves, and a critical path were calculated. This work is aimed at applying methods of evaluation and analysis of projects to find optimal solutions and control the efficiency of time and costs in project planning, by varying the work on the project and the executors of the work. The results of this study showed that there are quite large time reserves for works 5-7, 7-9, 6-9, etc., which makes it possible to redistribute work between performers and allows you to vary performers during the implementation of several projects simultaneously.

Keywords:
PERT, network model, planning, backup time, critical path
References

1. Szendiuch, I. Application of PERT for microelectronics technology education / I. Szendiuch // 26th International Spring Seminar on Electronics Technology: Integrated Management of Electronic Materials Production. – 2003. - Pp. 121-126. - DOI: 10.1109/ISSE.2003.1260498.

2. Novikova, T.P. Sistema upravleniya proektami dizayn-centra mikroelektroniki : monografiya / T.P. Novikova. – Voronezh, 2014. – 135 s.

3. Cristsbal, J. An integer linear programming model including time, cost, quality, and safety / J. Cristsbal, E. Navamuel // IEEE Access. – 2019. - Vol. 7. - Pp. 168307-168315. – 2019. - DOI: 10.1109/ACCESS.2019.2953185.

4. Bianco, L. A chance constrained optimization approach for resource unconstrained project scheduling with uncertainty in activity execution intensity / L. Bianco, M. Caramia, S. Giordani // Computers and Industrial Engineering. – 2018. – Vol. 128. - Pp. 831-836. – DOI: 10.1016/j.cie.2018.11.053.

5. Chrysafis, K.A. Approaching activity duration in PERT by means of fuzzy sets theory and statistics / K.A. Chrysafis, K. Basil // Journal of Intelligent & Fuzzy Systems. – 2014. – Vol. 26. - Pp. 577-587. - DOI: 10.3233/IFS-120751.

6. Grubbs, F. Attempts to validate certain PERT statistics or Picking on PERT / Grubbs. F. // Operations Research. – 1962. – Vol. 10. – Pp. 912-915.

7. Chanas, S. The use of fuzzy variables in PERT / S. Chanas, J. Kamburowski // Fuzzy Sets and Systems. – 1981. – Vol. 5. – Pp. 11-19.

8. Rahmanniyay, F. A multi-objective multi-stage stochastic model for project team formation under uncertainty in time requirements / F. Rahmanniya, A. Yu, J. Seif // Computers & Industrial Engineering. – 2019. – Vol. 132. – Pp. 153–165. – DOI: 10.1016/j.cie.2019.04.015.

9. Novikova, T.P. Production of complex knowledge-based systems: optimal distribution of labor resources management in the globalization context / T.P. Novikova, A.I. Novikov // Globalization and Its Socio-Economic Consequences. Rajecke Teplice, Slovakia: University of Zilina, 2018. - C. 2275–2281.

10. Evdokimova, S.A. Vybor metodologii modelirovaniya predmetnoy oblasti pri proektirovanii informacionnoy sistemy / S.A. Evdokimova // Modelirovanie sistem i processov. - 2015. - T. 8, № 3. - S. 18-22. - DOI: 10.12737/17161.

11. Opredelenie meropriyatiy po programme obespecheniya kachestva rabot proektirovaniya i seriynogo proizvodstva mikroshem i ocenki ih effektivnosti na primere SBIS 1867VN016 / K.V. Zol'nikov, A.S. Yagodkin, S.A. Evdokimova, T.V. Skvorcova // Modelirovanie sistem i processov. – 2020. – T. 13, № 1. – S. 46-53. - DOI: 10.12737/2219-0767-2020-13-1-46-53.

12. Osobennosti tehnologicheskogo processa izgotovleniya mikroshem kosmicheskogo naznacheniya po tehnologii KMOP KNS / V.K. Zol'nikov, S.A. Evdokimova, I.V. Zhuravleva [i dr.] // Modelirovanie sistem i processov. – 2020. – T. 13, № 3. – S. 53-58. - DOI: 10.12737/2219-0767-2020-13-3-53-58.

13. Lavlinskiy, V.V. Matematicheskie zavisimosti formalizacii procedur proektirovaniya MOP-tranzistorov / V.V. Lavlinskiy, A.L. Savchenko, A.Yu. Kulay // Modelirovanie sistem i processov. – 2018. – T. 11, № 1. – S. 31-38. - DOI: 10.12737/article_5b574c80ed0651.31883460.

14. Car'kov, I.N. Matematicheskie modeli upravleniya proektami : uchebnik. – M. : INFRA-M, 2019. – 514 s.

15. Sokolov, S.V. An approach to optimal synthesis in a conflict problem / S.V. Sokolov, I.V. Shcherban // Journal of Computer and Systems Sciences International. - 2003. - T. 42, № 5. - S. 692-697.

16. Metody identifikacii nechetkih i stohasticheskih sistem : monografiya // S.V. Sokolov, S.M. Kovalev, P.A. Kucherenko, Yu.A. Smirnov. – Moskva, 2018. – 235 s.

17. Belyaeva, T.P. Upravlenie predpriyatiyami mikroelektroniki: sostoyanie i zadachi razvitiya / T.P. Belyaeva, D.I. Stanchev // Informacionnye tehnologii modelirovaniya i upravleniya. - 2011. - № 3 (68). - S. 333-340.

18. Novikova, T.P. K voprosu vybora metodov prinyatiya upravlencheskih resheniy v social'no-ekonomicheskih sistemah / T.P. Novikova // Al'ternativnye istochniki energii v transportno-tehnologicheskom komplekse: problemy i perspektivy racional'nogo ispol'zovaniya. - 2015. - T. 2, № 1 (2). S. - 286-289.

19. Harjanto, R. The accelerating of duration and change of cost on construction project implementation / R. Harjanto, S. Azis, S. Hidayat // International Journal of Civil Engineering and Technology (UCIET). – 2019. – Vol. 10, № 1. – Pp. 825-832.

20. Budiawati, G.I. Time and cost optimization of business process RMA using PERT and goal programming / G.I. Budiawati, R. Sarno // TELKOMNIKA (Telecommunication Computing Electronics and Control). – 2019. - Vol. 17, № 2. - Pp.781-787. – DOI: 10.12928/telkomnika.v17i2.11792.

21. Effendi, Y.A. Non-linear optimization of critical path method / Y.A. Effendi, R. Sarno // 3rd International Conference on Science in Information Technology (ICSITech). – 2017. - Pp. 90-96. – DOI: 10.1109/ICSITech.2017.8257091.

22. Bianco, L. Theoretical Comparison of a Recent RCPSP / L. Bianco, M.A. Caramia // Formulation with the main linear programming based approaches. - RA1RO, 2017. – Vol. 51(3). - Pp. 519-532.

23. Naber, A. MIP models for resource constrained project scheduling with flexible resource profiles / A. Naber, R. Kolisch // European Journal of Operational Research. - 2014. - № 239(2). - Pp. 335-348. – DOI: 10.1016/j.ejor.2014.05.036.

24. Sokolov, S.V. Reshenie zadachi nelineynoy parametricheskoy identifikacii stohasticheskih ob'ektov s ispol'zovaniem kriteriya minimuma veroyatnosti oshibki ocenivaniya / S.V. Sokolov, P.A. Kucherenko // Izvestiya vysshih uchebnyh zavedeniy. Priborostroenie. - 2009. - T. 52, № 3. - S. 5-12.

25. Sokolov, S.V. Suboptimal'noe stohasticheskoe upravlenie v differencial'noy igre / S.V. Sokolov // Problemy upravleniya i informatiki. – 2002. - № 2. - S. 34-44.

Login or Create
* Forgot password?