The main problem of modern science is pointed out: reality of specific three-type systems (TTS) that are usually presented as complexity, and simultaneously impossibility of a description of such systems by a traditional modern reducing approach. Studying properties of system elements cannot help in a description of a complex system itself – complexity (three-type systems, living systems). Hence there arises an acute need in creation of new theories which would operate with maximum uncertainty and unpredictability and provide modeling TTS. The first step in this direction was taken on the grounds of a creation of theory of chaos and self-organization (TCS), according to which complexity cannot repeat an initial state of a system (or a vector parameters x(t0)), measures are not invariant, autocorrelation functions do not converge to zero and Lyapunov exponents are not positive. Chaos of TTS differs from a deterministic chaos and statistical distribution functions f(x) are not appropriate to describe it, because they continuously change. Deterministic, stochastic and chaotic models cannot describe TTS. This is the main property of emergent systems (complexity, TTS), therefore they are described by quasi-attractors.
chaos theory, self-organization, kvaziattraktry, tremor, tapping, the third type of system, emergent systems, determinism, stochastic
1. P.K. Izbrannye trudy: Kibernetika funktsional´nykh sistem. M.: Meditsina, 1998.– 400 s.
2. Es´kov V.M., Zilov V.G., Grigor´ev A.I., Khadartsev A.A. Novye pod-khody v teoreticheskoy biologii i medi-tsine na baze teorii khaosa i sinergetiki. Sistemnyy analiz i upravlenie v biomeditsinskikh sistemakh.– 2006.– T.5, №3.– S. 617–622.
3. Es´kov V.M., Filatova O.E., Fudin N.A., Khadartsev A.A. Novye metody izucheniya intervalov ustoychivosti biolo-gicheskikh dinamicheskikh sistem v ramkakh kompartmentno-klasternogo podkhoda. Vestnik novykh meditsinskikh tekhnologiy.– 2004.– № 3.– S. 5–6.
4. Es´kov V.M., Khadartsev A.A., Es´-kov V.V., Filatova O.E. Fluktuatsii i evo-lyutsii biosistem – ikh bazovye svoystva i kharakteristiki pri opisanii v ramkakh si-nergeticheskoy paradigmy. Vestnik medi-tsinskikh tekhnologiy.– 2010.– T. 17, №1.– S. 17–19.
5. Es´kov V.M., Es´kov V.V., Filato-va O.E., Khadartsev A.A. Fraktal´nye zako-nomernosti razvitiya cheloveka i cheloveche-stva na baze smeny trekh paradigm. Vest-nik meditsinskikh tekhnologiy.– 2010.– T. 17, №4.– S. 192–194.
6. Es´kov V.M., Khadartsev A.A., Gud-kov A.V., Gudkova S.A., Sologub L.I. Fi-losofsko-biofizicheskaya interpretatsiya zhizni v ramkakh tret´ey paradigmy. Vest-nik novykh meditsinskikh tekhnologiy.– 2012.– T. 19, № 1.– S. 38–41.
7. Interv´yu s Kurdyumovym S.P.. Voprosy filosofii.– 1991, №6.– C. 53–57.
8. Stepin V.S. Tipy nauchnoy ratsio-nal´nosti i sinergeticheskaya paradigma. Slozhnost´. Razum. Postneklassika. – 2013, № 4.– S. 45–59.
9. Barrow J. D., Davies P. C. W., Har-per C. L., (Eds.) Science and Ultimate Reality: Quantum Theory, Cosmology, and Complexi-ty, by 2004. New York: Cambridge University Press, xx + 742 pp.
10. Cannon W. The Wisdom of the Body.– New York, 1932.
11. Eskov V.M., Eskov V.V., Filato-va O.E. Characteristic features of measure-ments and modeling for biosystems in phase spaces of states. Measurement Techniques (Medical and Biological Measurements).– 2011.– v. 53, no. 12.– P. 1404–1410.
12. Eskov V.M., Gavrilenko T.V., Koz-lova V.V., Filatov M.A. Measurement of the dynamic parameters of microchaos in the beha-vior of living biosystems. Measurement Tech-niques.– 2012.– V. 55, no. 9.– P. 1096–1100.
13. Eskov V.M., Eskov V.V., Gavrilen-ko T.V., Zimin M.I. Uncertainty in quantum mechanics and biophisics of complex systems. Moskow University Physics Bulletin.– 2014, №5.– P. 41–46.
14. Eskov V. M. Evolution of the emer-gent properties of three types of societies: The basic law of human development, Emergence. Complexity and Self-organization.–2014.– 16(2).– P. 107–115.
15. Eskov V.M., Khadartsev A.A., Eskov V.V., Filatova O.E., Filatova D.U. Chaotic approach in biomedicine: Individua-lized medical treatment. J. Biomedical Science and Engineering.– 2013.– VI. 6.– P. 847–853.
16. Eskov V.M., Khadartsev A.A., Eskov V.V., Filatova O.E. Quantitative Regis-tration of the Degree of the Voluntariness and Involuntariness (of the Chaos) in Biomedical systems. Journal of analytical Sciences, Me-thods and Instrumentation.– 2013.– VI.3.– P. 67–74.
17. Gell-Mann M., Lloyd S. Information measures, effective complexity, and total in-formation. Complexity.– 1996, 2.– P. 44–52. DOI: 10.1002/(SICI)1099-0526(199609/10) 2:1<44::AID-CPLX10>3.0.CO;2-X
18. Gell-Mann M. Fundamental Sources of Unpredictability. Complexity.– 1997.– Vol. 3, №1.– P.13–19.
19. Haken H. Synergetics: An introduc-tion, 1983.
20. Prigogine I., Stengers I. Order out of chaos. Man´s new dialogue with nature. Heinemann. London, 1984
21. Prigogine I. The philosophiy of in-stability. Futures, 1989.
22. Prigogine I. The Die Is Not Cast. Futures. Bulletin of the Word Futures Studies Federation.– 2000.– Vol. 25, № 4.– P. 17–19.
23. Thom R. Structural Stability and Morphogenesis, 1972.
24. Wheeler J.A. At Home in Universe. New York: Springer-Vergal, 1996.
25. Wheeler J.A. Information, physics, quantum: the search for links. In Feyman and Computation: Exploring the Limits of Com-puters, ed A.J.G. Hey, 1999.– 309 p.
26. Weaver W. Science and Complexity. Rokfeller Foundation, New York City. American Scientist, 1948.– 36 p.