Glazov, Izhevsk, Russian Federation
The problem of estimating the didactic complexity of a mathematical task, which together with the solution is a multidimensional object characterized by a set of applied methods, is studied. The formation degree of the student's mathematical thinking is also determined by the set of mathematical methods he/she has mastered. Therefore, it is logical to consider the complexity of using certain methods of solution as the didactic complexity components of a particular task. It has been established that: 1) each mathematical problem can be characterized by a one-dimensional matrix, the components of which are proportional to the complexity of applying the corresponding method to solve it; 2) as the main methods for solving a mathematical problem, we can choose: methods of reading text, arithmetic calculations, algebraic transformations, method of the geometric constructions and operations with vectors use, combinatorial method, the trigonometric method, the method of logarithms and exponential functions, the differentiation and integration method, the operator method; 3) the complexity of applying a particular method in solving given task can be determined using a special computer program by counting the number of corresponding marker-terms and taking into account their complexity. The article evaluates the various components of the didactic complexity of 9 mathematical tasks on various topics and determines their general didactic complexity. It has been established that task 9 for calculating the divergence and rotor of a vector field is about 20 times more difficult than task 1 for solving a first-degree equation with one variable.
didactics, content analysis, mathematics, concept, complexity, learning task
1. Gel'fman E.G., Holodnaya M.A. Psihodidaktika shkol'nogo uchebnika. Intellektual'noe vospitanie uchaschihsya. – SPb.: Piter, 2006. 384 s.
2. Gidlevskiy A.V. Ischislenie trudnosti didakticheskoy zadachi // Vestnik Omskogo un-ta. 2010. № 4. S. 241 – 246.
3. Gusev V.A. Psihologo-pedagogicheskie osnovy obucheniya matematike. – M.: OOO “Izdatel'stvo “Verbum-M”, OOO “Izdatel'skiy centr “Akademiya”, 2003. 432 s.
4. Zil'bergleyt M.A., Nevdah M.M., Shpakovskiy Yu.F. Ocenivanie trudnosti ponimaniya uchebnyh tekstov dlya vysshey shkoly // Informatika, 2011. № 2. S. 111–123.
5. Lukov Val. A., Lukov Vl.A. Metodologiya tezaurusnogo podhoda: strategiya ponimaniya // Znanie. Ponimanie. Umenie. 2014. № 1. S. 18 – 35.
6. Mayer, R. V. Didakticheskaya slozhnost' uchebnyh tekstov i ee ocenka: monografiya. – Glazov: GGPI, 2020. – 149 s.
7. Mayer R.V. Nekotorye aspekty ocenivaniya kognitivnoy slozhnosti matematicheskih ponyatiy // Vestnik Omskogo gosudarstvennogo pedagogicheskogo universiteta. Gumanitarnye issledovaniya, 2020, № 3 (28). S. 122 – 126.
8. Mikk Ya.A. Optimizaciya slozhnosti uchebnogo teksta: V pomosch' avtoram i redaktoram. – M.: Prosveschenie, 1981. 119 s.
9. Naymushina O.E., Starichenko B.E. Mnogofaktornaya ocenka slozhnosti uchebnyh zadaniy // Obrazovanie i nauka. 2010. № 2 (70). S. 58-70.
10. Naumov I.S., Vyhovanec V.S. Ocenka trudnosti i slozhnosti uchebnyh zadach na osnove sintaksicheskogo analiza tekstov // Upravlenie bol'shimi sistemami: Sbornik trudov. 2014. Vyp. 48. S. 97 – 131.
11. Opolev P.V. Metafizika slozhnosti i «slozhnogo myshleniya» // Omskiy nauchnyy vestnik, № 1 (125). 2014. S. 96 – 99.
12. Sakovich A.L. Slozhnost' fizicheskih zadach i ih urovni // Fіzіka. Prablemy vykladannya. 2004. №1. S. 33 – 40.
13. Fridman L.M. Teoreticheskie osnovy metodiki obucheniya matematiki: Uchebnoe posobie. – M.: Editorial URSS, 2005. – 248 s.
14. Shalak V.I. Sovremennyy kontent–analiz. Prilozheniya v oblasti: politologii, psihologii, sociologii, kul'turologii, ekonomiki, reklamy. – M.: Omega–L, 2004. 272 s.
15. Davis B., Sumara D. Complexity and Education: Inquiries Into Learning, Teaching, and Research. – Mahwah, New Jersey, London, 2006. 201 p.