, United Kingdom
, Russian Federation
, Russian Federation
, Russian Federation
Russian Federation
The concept of sustainability is closely related to the security of the individual. The Ego Resiliency Scale Revised (ER89-R) is a brief, widely used scale that examines resilience as the ability to flexibly alter reactions in response to varying contextual demands. Consistent with contemporary evidence, the measure conceptualises ego resiliency as a higher-order construct comprising two factors denoting different behavioural and temperamental attributes that promote management of emotionality, Openness to Life Experiences (low negative) and Optimal Regulation (Positive orientation toward life). The present study translated the ER89-R into Russian, and evaluated its psychometric performance using confirmatory factor analysis (CFA) and Rasch analysis (N = 1110 respondents: 426 males, 686 females). CFA supported a higher-order factor structure. Rasch analysis assessing Openness to Life Experiences and Optimal Regulation scales, reported good item/person reliability and item/person fit, gender invariance, and existence of unidimensionality. However, items appeared to be slightly easy to endorse overall, and developing the measure to incorporate more varied items in terms of difficulty would be beneficial. Overall, results supported a higher-order conceptualisation of the ER89-R and suggested that the Openness to Life Experiences and Optimal Regulation scales are appropriate measures of ego resiliency in a Russian sample.
personal security, Ego resiliency, Ego Resiliency Scale Revised (ER89-R), Rasch analysis, confirmatory factor analysis, dimensionality
1. Abramova, I., Ananyina, A., & Shishmolina, E. (2013). Challenges in teaching Russian students to speak English. American Journal of Educational Research, 1(3), 99–103. https://doi.org/10.12691/education-1-3-6
2. Alessandri, G., Vecchione, M., Caprara, G., & Letzring, T. D. (2011). The ego resiliency scale revised. European Journal of Psychological Assessment, 28(2), 139–146. https://doi.org/10.1027/1015-5759/a000102
3. Alessandri, G., Vecchio, G., Steca, P., Caprara, M. G., & Caprara, G. V. (2007). A revised version of Kremen and Block’s Ego-Resiliency Scale in an Italian sample. Testing, Psychometrics, Methodology in Applied Psychology, 14(3-4), 1–19.
4. Andrich, D. A. (1978). A rating formulation for ordered response categories. Psychometrika, 43(4), 561–573. https://doi.org/10.1007/BF02293814
5. Block, J. (2002). Personality as an affect-processing system: Toward an integrative theory. Psychology Press. https://doi.org/10.4324/9781410602466
6. Block, J. H., & Block, J. (1980). The role of ego-control and ego-resiliency in the organization of behavior. In W. A. Collins (Ed.), Development of cognition, affect, and social relations: The Minnesota symposia on child psychology (Vol. 13, pp. 39–101). Abingdon: CRC Press.
7. Block, J., & Kremen, A. M. (1996). IQ and ego-resiliency: conceptual and empirical connections and separateness. Journal of Personality and Social Psychology, 70(2), 349–361. https://doi.org/10.1037/0022-3514.70.2.349
8. Brislin, R. W. (1970). Back-translation for cross-cultural research. Journal of Cross-Cultural Psychology, 1(3), 185–216. https://doi.org/10.1177/135910457000100301
9. Browne, M.W., & Cudeck, R. (1993). Alternative ways of assessing model fit. In K. A. Bollen & J. S. Long (Eds.), Testing Structural Equation Models, pp. 136–162. Newbury Park, CA: Sage.
10. Caprara, M., Steca, P., & De Leo, G. (2003). La misura dell'ego-resiliency [The measure of ego-resiliency]. Ricerche di Psicologia, 26(2), 7–23.
11. Chen, X., He, J., & Fan, X. (2020). Applicability of the Ego-Resilience Scale (ER89) in the Chinese Cultural Context: A Validation Study. Journal of Psychoeducational Assessment, 38(6), 675–691. https://doi.org/10.1177/0734282919889242
12. Denovan, A., Dagnall, N., Hill-Artamonova, E., & Musienko, T.V. (2021). Mental Toughness Questionnaire (MTQ18): A Russian version. Strategy of the Future in National Security and Strategic Planning, 2(35). https://doi.org/10.37468/2307-1400-2021-3-47-59.
13. Dept, S., Ferrari, A., & Halleux, B. (2017). Translation and cultural appropriateness of survey material in large‐scale assessments. Implementation of Large‐Scale Education Assessments, 168–192. https://doi.org/10.1002/9781118762462.ch6
14. Douglas, S. P., & Craig, C. S. (2007). Collaborative and iterative translation: An alternative approach to back translation. Journal of International Marketing, 15(1), 30–43. https://doi.org/10.1509/jimk.15.1.030
15. Farkas, D., & Orosz, G. (2015). Ego-resiliency reloaded: a three-component model of general resiliency. PloS one, 10(3), e0120883. https://doi.org/10.1371/journal.pone.0120883
16. Fredrickson, B. L., Tugade, M. M., Waugh, C. E., & Larkin, G. R. (2003). What good are positive emotions in crisis? A prospective study of resilience and emotions following the terrorist attacks on the United States on September 11th, 2001. Journal of Personality and Social Psychology, 84(2), 365–376. https://doi.org/10.1037/0022-3514.84.2.365
17. Gliner, J. A., Morgan, G. A., & Leech, N. L. (2016). Research methods in applied settings: An integrated approach to design and analysis. New York, NY: Routledge. https://doi.org/10.4324/9781315723082
18. Harkness, J. A., Villar, A., & Edwards, B. (2010). Translation, adaptation, and design. Survey methods in multinational, multiregional, and multicultural contexts, 115–140. https://doi.org/10.1002/9780470609927.ch7
19. Holland, P. W., & Wainer, H. (2012). Differential item functioning. Routledge. https://doi.org/10.4324/9780203357811
20. Hu, L., & Bentler, P. M. (1999). Cutoff criteria for fit indexes in covariance structure analysis: Conventional criteria versus new alternatives. Structural Equation Modeling: A Multidisciplinary Journal, 6(1), 1–55. https://doi.org/10.1080/10705519909540118
21. Kees, J., Berry, C., Burton, S., & Sheehan, K. (2017). An analysis of data quality: Professional panels, student subject pools, and Amazon's Mechanical Turk. Journal of Advertising, 46(1), 141–155. https://doi.org/10.1080/00913367.2016.1269304
22. Kopf, J., Zeileis, A., & Strobl, C. (2015). Anchor selection strategies for DIF analysis: Review, assessment, and new approaches. Educational and Psychological Measurement, 75(1), 22–56. https://doi.org/10.1177/0013164414529792
23. Letzring, T. D., Block, J., & Funder, D. C. (2005). Ego-control and ego-resiliency: Generalization of self-report scales based on personality descriptions from acquaintances, clinicians, and the self. Journal of Research in Personality, 39(4), 395–422. https://doi.org/10.1016/j.jrp.2004.06.003
24. Linacre, J. M. (2012). Dimensionality: Contrasts & variances. Retrieved from http://www.winsteps.com/winman/index.htm?principalcomponents.htm.
25. Linacre, J. M. (2018). WINSTEPS (Version 3.81) [Computer Software]. Beaverton, OR: Winsteps.com.
26. Ludlow, L. H., Enterline, S. E., & Cochran-Smith, M. (2008). Learning to teach for social justice-beliefs scale: An application of Rasch measurement principles. Measurement and Evaluation in Counseling and Development, 40(4), 194–214. https://doi.org/10.1080/07481756.2008.11909815
27. Luthar, S. S., Cicchetti, D., & Becker, B. (2000). The construct of resilience: A critical evaluation and guidelines for future work. Child Development, 71(3), 543–562. https://doi.org/10.1111/1467-8624.00164
28. Magno, C. (2009). Demonstrating the difference between classical test theory and item response theory using derived test data. The international Journal of Educational and Psychological Assessment, 1(1), 1–11.
29. Maltby, J., Day, L., & Hall, S. (2015). Refining trait resilience: Identifying engineering, ecological, and adaptive facets from extant measures of resilience. PloS one, 10(7), e0131826. https://doi.org/10.1371/journal.pone.0131826
30. Menesini, E., & Fonzi, A. (2005). Strategie di coping e caratteristiche di resilienza in adolescenza [Coping strategies and resiliency characteristics during adolescence]. Psicologia Clinica Dello Sviluppo, 3, 437–456.
31. Mills, R. J., Young, C. A., Nicholas, R. S., Pallant, J. F., & Tennant, A. (2009). Rasch analysis of the Fatigue Severity Scale in multiple sclerosis. Multiple Sclerosis Journal, 15(1), 81–87. https://doi.org/10.1177/1352458508096215
32. Papageorgiou, K. A., Denovan, A., Dagnall, N., & Artamonova, E. (2021). A Cross-Cultural Investigation of the Five-Factor Narcissism Inventory Short Form: Narcissism as a Multidimensional Trait in the United Kingdom and Russia. Journal of Personality Assessment, 1–9. https://doi.org/10.1080/00223891.2021.1929263
33. Royal, K. D., & Elahi, F. (2011). Psychometric properties of the Death Anxiety Scale (DAS) among terminally ill cancer patients. Journal of Psychosocial Oncology, 29(4), 359–371. https://doi.org/10.1080/07347332.2011.582639
34. Souza, M. A. P., Coster, W. J., Mancini, M. C., Dutra, F. C. M. S., Kramer, J., & Sampaio, R. F. (2017). Rasch analysis of the participation scale (P-scale): usefulness of the P-scale to a rehabilitation services network. BMC Public Health, 17(1), 1–9. https://doi.org/10.1186/s12889-017-4945-9
35. Stelmack, J., Szlyk, J. P., Stelmack, T., Babcock-Parziale, J., Demers-Turco, P., Williams, R. T., & Massof, R. W. (2004). Use of Rasch person-item map in exploratory data analysis: a clinical perspective. Journal of Rehabilitation Research & Development, 41(2), 233–241. https://doi.org/10.1682/jrrd.2004.02.0233
36. Stevens, J. P. (2009). Applied multivariate statistics for the social sciences (5th ed.). New York, NY: Routledge.
37. Strobl, C., Kopf, J., & Zeileis, A. (2015). Rasch trees: A new method for detecting differential item functioning in the Rasch model. Psychometrika, 80(2), 289–316. https://doi.org/10.1007/s11336-013-9388-3
38. Tennant, A., Penta, M., Tesio, L., Grimby, G., Thonnard, J.L., Slade, A., Lawton, G., Simone, A., Carter, J., Lundgren-Nilsson, Å., & Tripolski, M. (2004). Assessing and adjusting for cross-cultural validity of impairment and activity limitation scales through differential item functioning within the framework of the Rasch model: The PRO-ESOR project. Medical Care, 42(1), I37–I48. https://doi.org/10.1097/01.mlr.0000103529.63132.77
39. Tinsley, H., & Dawis, R. V. (1975). An investigation of the Rasch simple logistic model: sample free item and test calibration. Educational Psychological Measurement, 35(2), 325–339. https://doi.org/10.1177%2F001316447503500211
40. Tugade, M. M., & Fredrickson, B. L. (2004). Resilient individuals use positive emotions to bounce back from negative emotional experiences. Journal of Personality and Social Psychology, 86(2), 320–333. https://doi.org/10.1037/0022-3514.86.2.320
41. Ushio, H., & Atsuko, O. (2013). Development and Validation of a Japanese Version of the Ego-Resiliency Scale (ER89). Japanese Journal of Personality, 22(1), 37–47. https://doi.org/10.2132/personality.22.37
42. Vecchione, M., Alessandri, G., Barbaranelli, C., & Gerbino, M. (2010). Stability and change of ego resiliency from late adolescence to young adulthood: A multiperspective study using the ER89–R Scale. Journal of Personality Assessment, 92(3), 212–221. https://doi.org/10.1080/00223891003670166
43. Westfall, P. H., & Henning, K. S. S. (2013). Texts in statistical science: Understanding advanced statistical methods. Boca Raton, FL: Taylor & Francis. https://doi.org/10.1201/b14398
44. Wolfe, E. W., & Smith, E. V. (2007). Understanding Rasch measurement: Instrument development tools and activities for measure validation using Rasch models: Part II—Validation activities. Journal of Applied Measurement, 8(2), 204–234.
45. Wright, B. D., & Linacre, J. M. (1989). Observations are always ordinal; measurements, however, must be interval. Archives of Physical Medicine and Rehabilitation, 70(12), 857–860.
46. Wright, B. D., & Linacre, J. M. (1994). Reasonable mean-square fit values. Rasch Measurement Transactions, 8(3), 370–371.