The work objective is to study the formation of orbitally asymptoti-cally stable limit cycles and two-dimensional invariant tori includ-ing bifurcations near the attracting sets. The investigators use pri-marily methods based on the mathematic simulation of the dynamic systems. Some problems of the nonlinear dynamics of the material cutting are considered. A mathematical model of the dynamic sys-tem considering the dynamic link formed by the cutting process is offered. Here, the following key features of the dynamic coupling are taken into account: dependence of the cutting forces on the area of a cut-off layer, delay of forces towards the elastic deformation shifts of the tool in relation to the workpiece, restrictions imposed on the tool movements when the back of the instrument is ap-proaching the treated part of the workpiece, forces – cutting veloci-ty relation. The dynamic subsystem of the tool is presented by a linear dynamic system in the plane orthogonal to a cutting surface. Following the research, some guidelines for designing systems with the required stationary manifold in the state space are provid-ed. Importantly, in the neighborhood of equilibrium, various crite-ria of set causing regular or irregular features of the formed in-cut surface can develop depending on the models interacting under processing.
materials cutting, dynamic system, invariant manifold, bifurcations
Введение. Проблемы динамики процесса резания исследуются в течение последних 50 лет. При этом внимание уделялось, главным образом, двум вопросам: условиям и механизмам возбуждения автоколебаний [1–5] и анализу устойчивости процесса резания [6–10]. Довольно активно изучаются подсистемы инструмента и обрабатываемой заготовки, их взаимодействия через динамическую связь, формируемую процессом резания. Полученные в результате данные служат основой для исследования динамики процесса резания.
1. Drozdov, N.А. K voprosu o vibratsiyakh stanka pri tokarnoy obrabotke. [On machine vibrations under turning.] Stanki i instrument,1937, no. 12, pp. 12–17 (in Russian).
2. Kashirin, А.I. Issledovanie vibratsiy pri rezanii metallov. [Study on vibrations under metal cutting.] Moscow; Leningrad: AN SSSR, 1944, 282 p. (in Russian).
3. Sokolovskiy, А.P. Vibratsii pri rabote na metallorezhushchikh stankakh. Issledovanie kolebaniy pri rezanii metallov. [Vibrations when operat-ed at machine-tools. Vibration analysis under metal cutting.] Moscow: Mashgiz, 1958, pp. 15–18 (in Russian).
4. Murashkin, L.S., Murashkin, S.L. Prikladnaya nelineynaya mekhanika stankov. [Applied nonlinear tooling mechanics.] Leningrad: Mashinostroenie, 1977, 192 p. (in Russian).
5. Albrecht, P. Dinamika protsessa rezaniya metalla. [Dynamics of Metal-Cutting Process.] Konstruirovanie i tekhnologiya mashinostroeniya: tr. Amerikanskogo obshchestva inzhenerov-mekhanikov (ASME). [Construction and Building Design: Proc. Amer. Soc. of Mech. Engineers (ASME).] J. Manuf. Sci. Eng., 1965, vol. 87, iss. 4, pp. 40–54 (in Russian).
6. Zharkov, I.G. Vibratsii pri obrabotke lezviynym instrumen-tom. [Vibrations under edge tool cutting.] Leningrad: Mashinostroenie, 1987, 184 p. (in Russian).
7. Tlusty, I. Avtokolebaniya v metallorezhushchikh stankakh. [Self-oscillations in machine tools.] Moscow: Mashgiz, 1956, 395 p. (in Russian).
8. Kudinov, V.А. Dinamika stankov. [Dynamics of machines.] Moscow: Mashinostroenie, 1967, 359 p. (in Russian).
9. Elyasberg, М.Е. Avtokolebaniya metallorezhushchikh stankov: teoriya i praktika. [Self-oscillations of machine tools: theory and practice.] St. Petersburg: OKBS, 1993, 182 p. (in Russian).
10. Veyts, V.L., Vasilkov, D.V. Zadachi dinamiki, modelirovaniya i obespecheniya kachestva pri mekhanicheskoy obrabotke malozhestkikh zagotovok. [Problems of dynamics, modeling and quality assurance for machining slender workpieces.] Stanki, instrument, 1999, no. 6, pp. 9–13 (in Russian).
11. Zakovorotny, V.L., Flek, M.B. Dinamika protsessa rezaniya. Sinergeticheskiy podkhod. [Dynamics of the cutting process. Synergetic approach.] Rostov-on-Don: DSTU Publ. Centre, 2006, 876 p. (in Russian).
12. Zakovorotny, V.L., Pham Dinh Tung, Nguyen Xuan Chiem. Ma-tematicheskoe modelirovanie i parametricheskaya identifikatsiya dinamicheskikh svoystv podsistemy instrumenta i zagotovki. [Mathematical simulation and para-metric identification of dynamic properties of the tool and workpiece subsys-tem.] Izvestiya vuzov. Severo-Kavkazskiy region. Technical Sciences. 2011, no. 2, pp. 38–46 (in Russian).
13. Zakovorotny, V.L., Bordachev, E.V., Alexeychik, M.I. Dinamicheskiy monitoring sostoyaniya protsessa rezaniya. [Dynamic monitoring of the cutting process state.] Stanki, instrument, 1998, no. 12, pp. 6–12 (in Russian).
14. Zakovorotny, V.L., Pham Dinh Tung, Nguyen Xuan Chiem. Modelirovanie deformatsionnykh smeshcheniy instrumenta otnositel´no zagotovki pri tochenii. [Modeling of tool deformation offsetting to workpiece in turning.] Vestnik of DSTU, 2010, vol. 10, no. 7, pp. 1005–1015 (in Russian).
15. Altintas, Y., Budak, E. Analytical prediction of stability lobes in milling. CIRP Annals, 1995, vol. 44, pp. 357–362.
16. Balachandran, B. Non-linear dynamics of milling process. Philosophical Transactions of the Royal Society, 2001, vol. 359, pp. 793–820.
17. Davies, M.-A., Pratt, J.-R. The stability of low immersion milling. CIRP Annals, 2000, vol. 49, pp. 37–40.
18. Davies, M.-A., et al. Stability prediction for low radial immersion milling. The Journal of Manufacturing Science and Engineering, 2002, vol. 124, pp. 217–225.
19. Faassen, R.-P.-H, et al. Prediction of regenerative chatter by modeling and analysis of high-speed milling. The International Journal of Machine Tools and Manufacture, 2003, vol. 43, pp. 1437–1446.
20. Corpus, W.-T., Endre, W.-J. Added stability lobes in machining processes that exhibit periodic time variation. Part 1: An analytical solution. The Journal of Manufacturing Science and Engineering, 2004, vol. 126, pp. 467–474.
21. Floquet, M.-G. Equations diff´erentielles lin´eaires a coefficients pe-ridiques. Annales scientifiques de l´École normale supérieure, 1883, vol. 12, pp. 47–89.
22. Zakovorotny, V.L., Pham Thu Huong. Parametricheskoe samo-vozbuzhdenie dinamicheskoy sistemy rezaniya. [Parametric self-excitation of cut-ting dynamic system.] Vestnik of DSTU, 2013, no. 5/6 (74/75), pp. 97–104 (in Russian).
23. Gouskov, A.M., et al. Nonlinear dynamics of a machining system with two interdependent delays. Communications in Nonlinear Science and Numerical Simulation, 2002, vol. 7, pp. 207–221.
24. Peigne, G., et al. Impact of the cutting dynamics of small radial immersion milling operations on machined surface roughness. The International Journal of Machine Tools and Manufacture, 2004, vol. 44, pp. 1133–1142.
25. Szalai, R., Stepan, G., Hogan, S.-J. Global dynamics of low immersion high-speed milling. Chaos: An Interdisciplinary Journal of Nonlinear Science, 2004, vol. 14, pp. 1069–1077.
26. Merkin, D.R. Vvedenie v teoriyu ustoychivosti dvizheniya. [Introduction to the stability theory.] Moscow: Nauka, 1971, 304 p. (in Rus-sian).
27. Likhadanov, V.M. O vliyanii struktury sil na ustoychivost´ dvizheni-ya. [On effect of force structure on stability of motion.] Journal of Applied Mathematics and Mechanics, 1974, vol. 38, pp. 246–253 (in Russian).
28. Likhadanov, V.M. O stabilizatsii potentsial´nykh sistem. [Stabilization of direct-current systems.] Journal of Applied Mathematics and Mechanics, 1975, vol. 39, pp. 53–58 (in Russian).
29. Ostafyev, V.A., Antonyuk, V.S., Tymchik, G.S. Diagnostika protsessa metalloobrabotki. [Diagnostics of metalworking process.] Kiev: Tekhnika, 1991, pp. 54–55 (in Russian).