, Russian Federation
graduate student
UDK 629.4.069 Другие вспомогательные системы, являющиеся частью подвижного состава
Purpose: Development, testing methodology for the definition of energy expenditure on hydrostatic drive of cooling device motor fans of diesel locomotive TEP70BS. Energy expenditures on drive of cooling devices motor-fans constitute significant part in the total volume of energy expenditures for auxiliary needs. When determining diesel cooling device power, picked for motor-fan drive, it is necessary to take into account the influence of motor-fan drive technical condition and diesel cooling system general technical condition. The given task can be solved by the way of statistical analysis of the information, being registered by TEP70BS locomotive on-board diagnostics subsystem when performing corresponding analytical calculations. At the same, it is necessary to account for the peculiarities of functioning of motor-fan hydrostatic drive under various loading modes. Methods: Statistical processing and analysis of measurement results. Analytical calculation of a hydrostatic system on the basis of processing of measurement results. Reduction of hydrostatic drive parameters to non-nominal modes. Results: Methodology of energy expenditure analytical calculation on the basis of statistical analysis of data on motor fan operating modes is proposed. Probable values of power, spent on motor-fan drive for various controller positions, are determined. It is shown that for controller nominal position, average power consumption for being considered sample of five locomotives will constitute 23.2 kW per two fan motors. Practical importance: The use of the presented methodology allows to raise significantly the determination accuracy for power, being picked for auxiliary needs and, as a result, to increase calculation accuracy for traction characteristics and fuel consumption characteristics of TEP70BS diesel locomotive.
Energy efficiency, hydrostatic drive of cooling device fan motors, TEP70BS diesel locomotive, energy expenditures
1. Baranov L. A. Optimizaciya upravleniya dvizheniem poezdov / L. A. Baranov, E. V. Erofeev, I. S. Meleshin, L. M. Gin'; pod red. L. A. Baranova. — M.: MIIT, 2011. — 164 s.
2. Yurenko K. I. Matematicheskoe modelirovanie energooptimal'nyh rezhimov vedeniya poezda s uchetom vozmuscheniy / K. I. Yurenko, A. N. Savos'kin, E. I. Fandeev // Izv. vuzov. Severo-Kavkazskiy region. Tehnicheskie nauki. — 2015. — № 3. S. 34–44.
3. Muginshteyn L.A., Ilyutovich A.E., Yabko I.A. Energooptimal'nye metody upravleniya dvizheniem poezdov. Moskva, Intekst, 2012, 80s.
4. Grachev V. V. Preskriptivnyy kontrol' energoeffektivnosti silovoy ustanovki teplovoza s ispol'zovaniem intellektual'nyh metodov obrabotki izmeritel'noy informacii vstroennyh sredstv diagnostiki: monografiya / V. V. Grachev. — SPb.: FGBOU VO PGUPS, 2019. — 106 s.
5. Perminov V. A. Vliyanie tehnicheskogo sostoyaniya vspomogatel'nogo oborudovaniya teplovozov na ih energoeffektivnost' v ekspluatacii / V. A. Perminov, V. V. Grachev, D. N. Kurilkin, I. E. Nesterov // Vestnik nauchno-issledovatel'skogo i konstruktorsko-tehnologicheskogo instituta podvizhnogo sostava. — 2015. — № 97. — S. 45–58.
6. 2TE70.10.70.000G3. Gidroprivod ventilyatorov. Shema gidravlicheskaya principial'naya.
7. Vil'ner Ya. M. Spravochnoe posobie po gidravlike, gidromashinam i gidroprivodam / Ya. M. Vil'ner, Ya. T. Kovalev, B. B. Nekrasov; pod red. B. B. Nekrasova. Minsk: Vysheysh. shkola, 1976. — 416s.
8. Bykov V. G. Passazhirskiy teplovoz TEP70 / V. G. Bykov, B. N. Moroshkin, G. E. Serdelevich i dr. — M.: Transport, 1976. — 232 s.
9. Teplovoz TEP70BS. Rukovodstvo po ekspluatacii TEP70A.00RE. Chast' 1. Tehnicheskoe opisanie. OAO «Kolomenskiy zavod». — 2009. — 370 s.
10. Solomahova T. S. Centrobezhnye ventilyatory. Aerodinamicheskie shemy i harakteristiki. Spravochnik / T. S. Solomahova, K. V. Chebysheva. — M.: Mashinostroenie, 1980. 176 s.