It was established that recombinant human lactoferrin (rhLf), isolated from transgenic goats milk, binds to human neutrophils. This binding leads to an increase in intracellular Ca2+ due to the mobilization of Ca2+ from the endoplasmic reticulum and influx of extracellular Ca2+ through the store-operating calcium channels and T-type calcium channels. It was found that expose of neutrophils to rhLf lead to actin cytoskeleton reorganization and increase in intracellular protein tyrosine phosphorylation. RhLf augmented fMLP-induced respiratory burst of neutrophils. Together, these finding indicate that rhLf has a modulating effect on the functional neutrophil properties. Obtained results can be used to regulate the body's immune response, aimed to enhance the functional activity of neutrophils in pathologies associated with decreased killer capacity of these cells.
recombinant human lactoferrin, neutrophils, respiratory burst, calcium ions, tyrosine kinases, actin cytoskeleton
1. García-Montoya I.A., Cendón T.S., Arévallo-Gallegos S., Rascón-Cruz Q. Lactoferrin a multiple bioactive protein: an overview. Biochim. Biophys. Acta, 2012, vol. 1820, pp. 226-236.
2. Ward P.P., Paz E., Conneely O.M. Multifunctional roles of lactoferrin: a critical overview. Cell Mol. Life Sci., 2005, vol. 62, pp. 2540-2548.
3. Kolaczkowska E., Kubes P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol., 2013, vol. 13, pp. 159-175.
4. Suzuki Y.A., Lopez V., Lönnerdal B. Mammalian lactoferrin receptors: structure and function. Cell. Mol. Life Sci., 2005, vol. 62, pp. 2560-2575.
5. Oseas R., Yang H.H., Baehner R.L., Boxer L.A. Lactoferrin: a promoter of polymorphonuclear leukocyte adhesiveness. Blood, 1981, vol. 57, pp. 939-945.
6. Francis N., Wong S.H., Hampson P., Wang K., Young S.P., Deigner H.P., Salmon M., Scheel-Toellner D., Lord J.M. Lactoferrin inhibits neutrophil apoptosis via blockade of proximal apoptotic signaling events. Biochem. Biophys. Acta, 2011, vol. 1813, pp. 1822-1826.
7. Lukashevich V.S., Budevich A.I., Semak I.V., Kuznecova V.N., Malyushkova E.V., Pyzh A.E., Novakovskaya S.A., Rudnichenko Yu.A., Popkov N.A., Ivashkevich O.A., Zaluckiy I.V. Poluchenie rekombinantnogo laktoferrina cheloveka iz moloka koz-producentov i ego fiziologicheskie effekty. Doklady NAN Belarusi, 2016, t. 60, № 1, c. 72-81. [Lukashevich V.S., Budevich A.I., Semak I.V. et al. Doklady NAN Belarusi, 2016, vol. 60, no. 1, pp. 72-81. (In Russ.)]
8. Grynkiewicz G., Poenie M., Tsien R.Y. A new generation of Ca2+ indicators with greatly improved fluorescence properties. J. Biol. Chem., 1985, vol. 260, no. 6, pp. 3440-3450.
9. Condliffe A.M., Kitchen E., Chilvers E.R. Neutrophil priming: pathophysiological consequences and underlying mechanisms. Clin. Sci. (Lond.), 1998, vol. 94, pp. 461-471.
10. Swain S.D., Rohn T.T., Quinn M.T. Neutrophil priming in host defense: role of oxidants as priming agents. Antioxid. Redox Signal, 2002, vol. 4, pp. 69-83.
11. Mayanskiy A.N. NADFN-oksidaza neytrofilov: aktivaciya i regulyaciya. Citokiny i vospaleniya, 2007, t. 6, № 3, s. 3-13. [Mayanskiy A.N. NADPH-oxidase of neutrophils: activation and regulation. Tsitokiny i vospaleniye, 2007, vol. 6, no. 3, pp. 3-13. (In Russ.)]
12. Sheppard F.R., Kelher M.R., Moore E.E., McLaughlin N.J., Banerjee A., Silliman C.C. Structural organization of the neutrophil NADPH oxidase: phosphorylation and translocation during priming and activation. J Leukoc. Biol., 2005, vol. 78, pp. 1025-1042.
13. Lacy P., Eitzen G. Control of granule exocytosis in neutrophils. Front. Biosci., 2008, vol. 13, pp. 5559-5570.
14. Görlach A., Bertram K., Hudecova S., Krizanova O. Calcium and ROS: A mutual interplay. Redox Biol., 2015, vol. 6, pp. 260-271.
15. Forehand J.R., Pabst M.J., Phillips W.A., Johnston R.B. Lipopolysaccharide priming of human neutrophils for an enhanced respiratory burst. Role of intracellular free calcium. J. Clin. Invest., 1989, vol. 83, pp. 74-83.
16. Finkel T.H., Pabst M.J., Suzuki H., Guthrie L.A., Forehand J.R., Phillips W.A., Johnston R.B. Priming of neutrophils and macrophages for enhanced release of superoxide anion by the calcium ionophore ionomycin. Implications for regulation of the respiratory burst. J. Biol. Chem., 1987, vol. 262, pp. 12589-12596.
17. Mitroshina E.V., Vedunova M.V., Kalinceva Ya.I. Kal'cievyy imidzhing v kletochnyh kul'turah i tkanyah. Nizhniy Novgorod: Nizhegorodskiy gosudarstvennyy universitet im. N.I. Lobachevskogo, 2011, 28 s. [Mitroshina E.V., Vedunova M.V., Kalintseva Ya.I. Calcium imaging in cell cultures and tissues. Nizhny Novgorod: Nizhny Novgorod State University. N.I. Lobachevsky, 2011, 28 p. (In Russ.)]
18. McLeish K.R., Knall C., Ward R.A., Gerwins P., Coxon P.Y., Klein J.B., Johnson G.L. Activation of mitogen-activated protein kinase cascades during priming of human neutrophils by TNF-alpha and GM-CSF. J. Leukoc. Biol., 1998, vol. 64, pp. 537-545.
19. Naccache P.H. Signaling in neutrophils: a retro look. ISRN Physiology, 2013, vol. 2013, 13 p.
20. Asahi M., Taniguchi T., Hashimoto E., Inazu T., Maeda H., Yamamura H. Activation of protein-tyrosine kinase p72syk with concanavalin A in polymorphonuclear neutrophils. J. Biol. Chem., 1993, vol. 268, pp. 23334-23338.