Design Principles and Models of Automatic Control System for Second Locomotive at Virtual Assessment
Abstract and keywords
Abstract (English):
Automatic control system model of second train locomotive at virtual assessment as well as control quality analysis approaches have been considered. The controlled value represents being calculated in train traffic process the distance between “tail” of a first train and “head” of a second one, providing traffic safety at emergency braking of a first train. This distance is called “virtual replacer length”. Formalization has been introduced allowing to account for synchronization absence at transfer of information on the coordinate and speed of a first locomotive and the control digital system work cycle of a second one. Speed and coordinate measurement errors have been considered which’re connected with lagging at information transfer and possibility of failing in decoding of received by radio channel information by second locomotive receiver. At virtual length assessment, various ways of its upper assessment have been considered, the way has been chosen, taking into account motion speeds and the coordinates of both trains, emergency braking path of a first train, the possibility of emergency braking of a first train at the beginning of the cycle of information transfer, measurement methodological and instrumental errors. Digital proportional integral differentiating control law has been considered as an operator, transforming mismatches at the choice of a control of a second locomotive. Automatic control system model has been developed which relates to impulse system class and which feature is the calculation of control action in train traffic process. The parametric synthesis of automatic control system is recommended to be held by simulation modelling methods. Control quality criteria have been chosen.

Keywords:
virtual replacer, emergency braking, service braking, automatic control system, radio channel, virtual replacer length, system model, simulation modelling, control law, measurement errors, virtual replacer length calculation, control quality criteria
Text
Publication text (PDF): Read Download
References

1. Baranov L. A. Sistema avtomaticheskogo i telemehanicheskogo upravleniya elektropodvizhnym sostavom / L. A. Baranov, E. V. Erofeev, V. I. Astrahan i dr.; pod red. L. A. Baranova. — M.: Transport, 1984. — 311 s.

2. Baranov L. A. 35 let kafedre «Avtomatika i telemehanika» / L. A. Baranov // Avtomaticheskoe upravlenie tehnologicheskimi processami na transporte. Yubileynyy sbornik nauchnyh trudov. — M.: MIIT, 1996. — Vyp. 892. — S. 3–8.

3. Bushuev S. V. Povyshenie propusknoy sposobnosti uchastka zheleznoy dorogi s primeneniem tehnologii virtual'noy scepki / S. V. Bushuev, K. V. Gundyrev, N. S. Golochalov // Avtomatika na transporte. — 2021. — № 1. — S. 7–20. — DOI: 10.20295/2412-9186-2021-7-1-7-20.

4. Klimova E. E. Tehnologiya virtual'noy scepki poezdov kak instrument, povysheniya propusknoy i provoznoy sposobnosti linii / E. E. Klimova, L. E. Pilinushka, V. S. Ryabov // Transportnaya infrastruktura sibirskogo regiona: materialy desyatoy Mezhdunarodnoy nauchno-prakticheskoy konferencii. — 2019. — S. 60–64.

5. Flammini F. Towards Railway Virtual Coupling / F. Flammini, S. Marrone, R. Nardone et al. // International Conference of Electrical Systems for Aircraft, Raiway, Ship Propulsion and Road Vehicles and International Transportation Electrification Conference. — 2019.

6. Mitchell I. Train Convoys or Virtual Coupling / I. Mitchell, E. Goddard, F. Montes // IRSE news. Institution of railway signal engineers. — 2016. — Iss. 219.

7. Goikoetxea J. Roadmap Towards the Wireless Virtual Coupling of Trains / J. Goikoetxea // Springer International Publishing Switzerland. — 2016. — Pp. 3–9.

8. Nikitin A. B. Rezul'taty issledovaniya tehnicheskih sredstv kontrolya celostnosti poezdov / A. B. Nikitin, I. V. Kushpil' // Avtomatika na transporte. — 2020. — № 4. C. 411–434. — DOI: 10.20295/2412-9186-2020-6-4-411-434.

9. Quante F. Kontrol' polnosostavnosti gruzovyh poezdov / F. Quante // Zheleznye dorogi mira. — 2005. — № 2. — S. 43–48.

10. Bestem`yanov P. F. Energy efficient algorithms assessment of the Rail circuit operation / P. F. Bestem`yanov // Russian Electrical Engineering. — 2017. — Vol. 88. — № 9. — S. 557–562.

11. Baranov L. A. Kvantovanie po urovnyu i vremennaya diskretizaciya v cifrovyh sistemah upravleniya / L. A. Baranov. — M.: Energoatomizdat, 1990. S. 306.

12. Baranov L. A. Mikroprocessornye sistemy avtovedeniya poezdov / L. A. Baranov, Ya. M. Golovicher, E. V. Erofeev i dr.; pod red. L. A. Baranova. — M.: Transport, 1990. — S. 272.

13. Rozenfel'd V. E. Teoriya elektricheskoy tyagi / V. E. Rozenfel'd, I. P. Isaev, N. N Sidorov; pod red. I. P. Isaeva. — M.: Transport, 1995. — S. 294.

14. Baranov L. A. Optimizaciya upravleniya dvizheniem poezdov / L. A. Baranov, E. V. Erofeev, I. S. Mileshin i dr.; pod red. L. A. Baranova. — M.: MIIT, 2011. — S. 164.

15. Lisicyn A. L. Nestacionarnye rezhimy tyagi (Tyagovoe obespechenie perevozochnogo processa) / A. L. Lisicyn, L. A. Muginshteyn. — M.: Intekst, 1996. — 159 s.

16. Gao Gj. of longitudinal forces of coupler devices in emergency braking process for heavy haul trains / Gj. Gao, W. Chen, J. Zhang et al. // J. Cent. South Univ. — 2017. — № 24. Pp. 2449–2457. — DOI: https://doi.org/10.1007/s11771-017-3656-9

17. Pugi L. Modelling the longitudinal dynamics of long freight trains during the braking phase. / L. Pugi, D. Fioravanti, A. Rindi // 12th IFToMM World Congress. Besancon, France. — 2007. Pp. 1–6.

18. Cole C. Longitudinal train dynamics / C. Cole, S. Iwnicki (ed.) // Handbook of railway vehicle dynamics. Taylor & Francis. — London, 2006. — Pp. 239–278.

19. Wu Q. A review of dynamics modelling of friction draft gear / Q. Wu, C. Cole, S. Luo et al. // Veh Syst Dyn. — 2014. № 52(6). Pp. 733–758.

Login or Create
* Forgot password?